MSE 214 Composites B

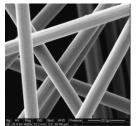
Les matériaux composites

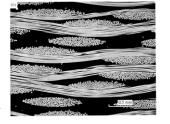
- . Les fibres, les matrices
- . Micromécanique et anisotropie
- Les procédés de mise en oeuvre
- . Les développements récents

Biocomposites

Composites fonctionnels Nanocomposites

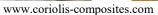
. . .


Références:



Traité des Matériaux, vol. 15
" Matériaux composites à matrice organique"

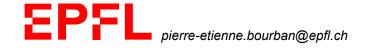
Presse Polytechniques et Universitaires Romandes



www.reinforcedplastics.com

Des fibres aux stratifiés

Rigidités et anisotropies exploitées



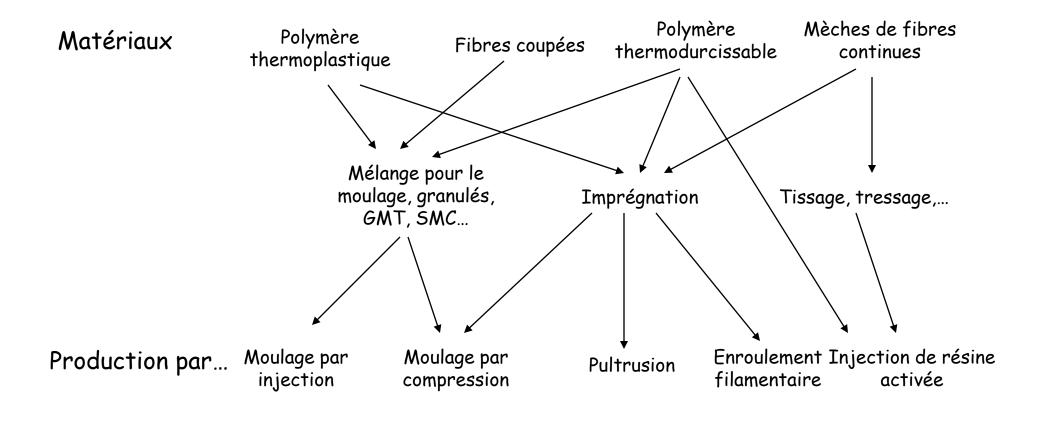
BMW i8 automobile.challenges

Mise en œuvre des composites

- > Introduction
- > Transformation des thermodurcissables (TD)
- > Techniques de fabrication des TD
- > Transformation des thermoplastiques(TP)
- > Techniques de fabrication des TP
- > Comparaison et sélection des techniques

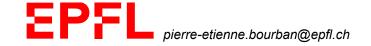
Introduction

Mise en œuvre des composites Type de matrice

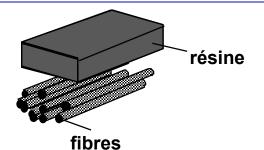

Imprégnation des renforts

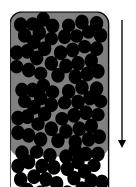
Types de semi-produits

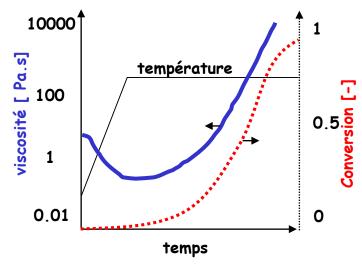
Consolidation

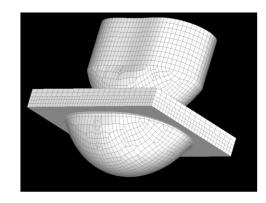


Des matériaux aux produits



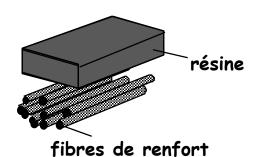

Mise en œuvre des composites


(a) Préimprégnés moule mise en forme



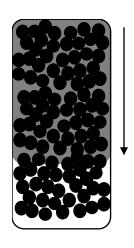
Les phénomènes

Tranfert de chaleur, écoulement, formage....

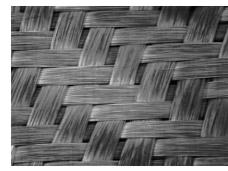

Imprégnation

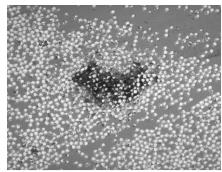
Transformation de la matrice

- Polymérisation, réticulation des termodurcis
- Fusion et consolidation des thermoplastiques

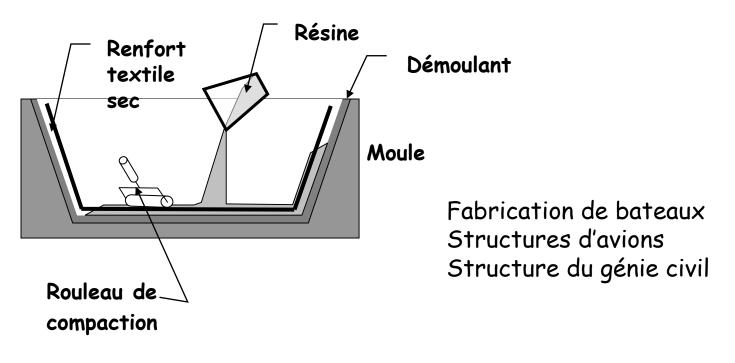


Imprégnation



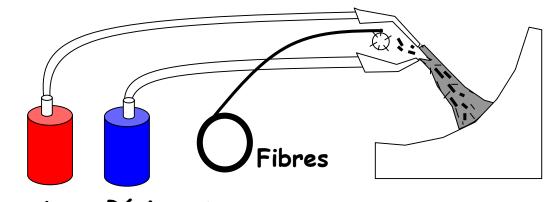

$$t_{\text{imprégnation}} = \eta \frac{(1 - V_f)L^2}{2K(P_a - \Delta P_c)}$$

Loi de Darcy

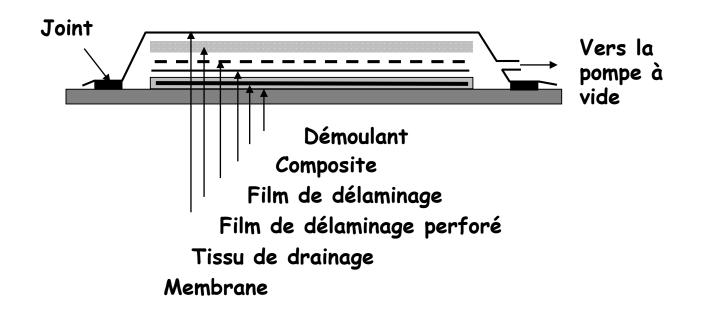


Temps d'imprégnation Volume à imprégner 1-Vf Viscosité de la résine η Distance à imprégner L Perméabilité du renfort K Pression appliquée P_a Pression capillaire P_c Contre-pression du lit de renfort

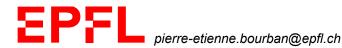
Moulage au contact


Avantages :	Inconvénients :
Facilité de mise en oeuvre	Faibles cadences de production
Investissements très faibles	Main d'oeuvre importante
Sans limitation de dimensions	Epaisseur difficile à contrôler
Main d'oeuvre peu qualifiée	Une face brute

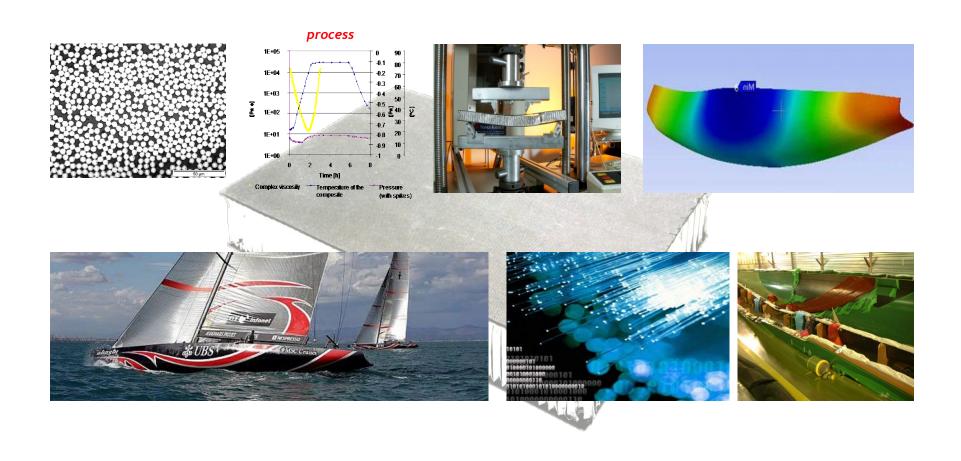
Moulage au spray

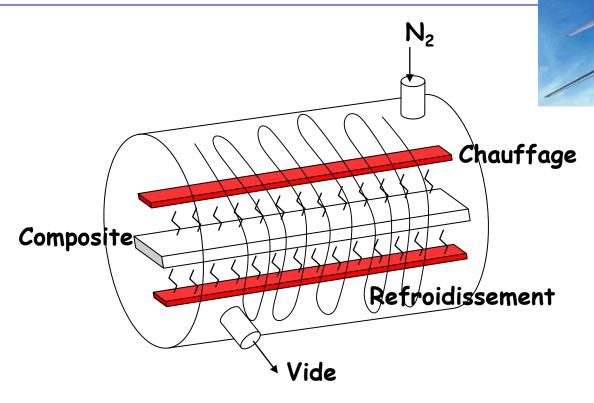

Avantages :	Inconvénients :
Cadence plus rapide que le moulage au	Main d'oeuvre importante et qualifiée
contact	Peu de constance dans l'épaisseur
Sans limitation de dimensions	Propriétés mécaniques pas très élevées
Equipements pas trop importants	

Découpeuse de fibres

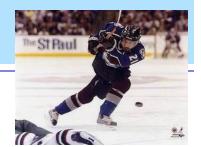


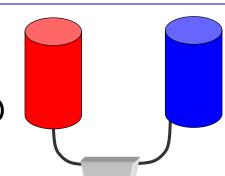
Résine et Résine et catalyseur durcisseur


Moulage sous vide

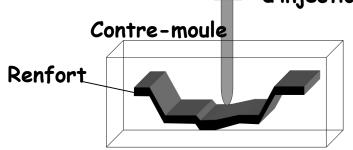

Avantages :	Inconvénients :
Facilité de mise en oeuvre Investissements faibles	Faibles cadences de production Main d'oeuvre importante

De la fibre à la coque


Moulage à l'autoclave


Avantages :	Inconvénients :
Contrôle des paramètres	Investissements
Bonne qualité des composites	Faibles cadences de production

Transfert et injection de résine

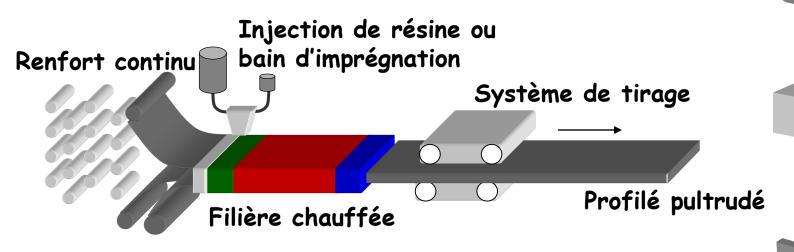

Solution de monomère *A* (+ durcisseur)

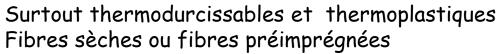
Solution de monomère B

Reaction injection moulding (RIM)
Resin transfer moulding (RTM)

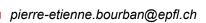
Tête de mélange et d'injection

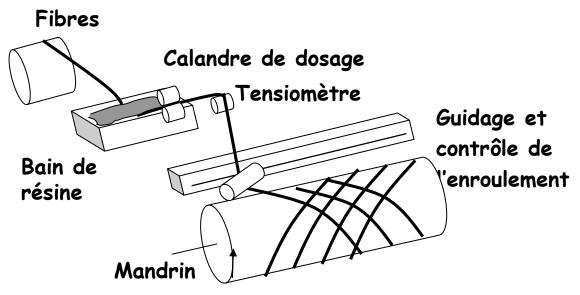
TD et TP (Polyuréthane, PA)
Prépolymères réactifs
Version avec fibres courtes RRIM
ou fibres longues dans le moule SRIM
Réaction dans le moule, après imprégnation

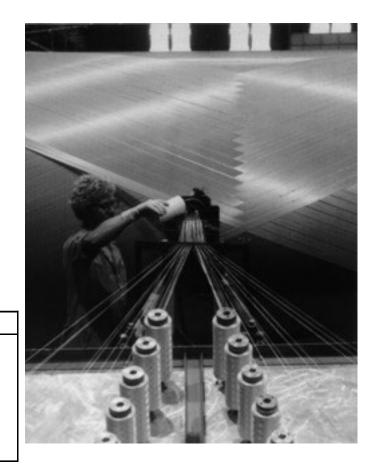

Moule



Avantages :	Inconvénients :
Faible consommation d'énergie	Performances thermiques
Pression de moulage faible	limitées
Possibilité de fabrication de grandes	
pièces complexes	
Cycles de moulage courts	

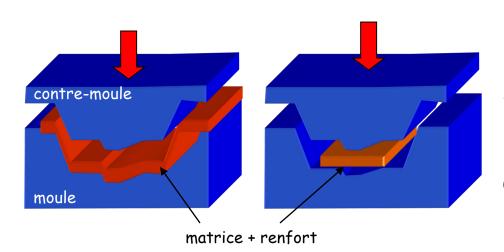

Pultrusion


Avantages :	Inconvénients :
Méthode de production en continu	Investissements assez importants
Bon contrôle du pourcentage de renfort	Limitations dans les variations
Grande automatisation possible	d'épaisseur.
Vitesses de production élevées	
Réalisation de formes variables	



Enroulement filamentaire

Réservoirs, réservoirs sous pression, tubes....



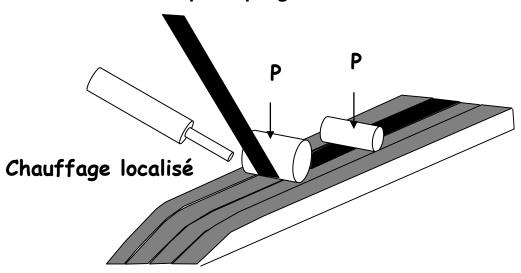
Avantages :	Inconvénients :
Moulage de pièces de révolution, sans	Investissements importants
limitation de dimensions	Cadence de fabrication faibles
Face intérieure lisse	Face extérieure brute
Taux de fibres jusqu'à 80%	
Orientation des fibres dans le sens	
préférentiel	

Moulage par compression

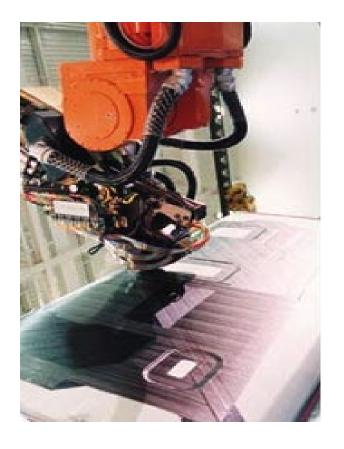
Thermodurcissables et surtout thermoplastiques Semi-produits à fibres longues :

SMC: sheet moulding compound, verre+ polyester GMT, TRE: glass mat thermoplastiques, verre + PP

Sans écoulement Avec écoulement de matière

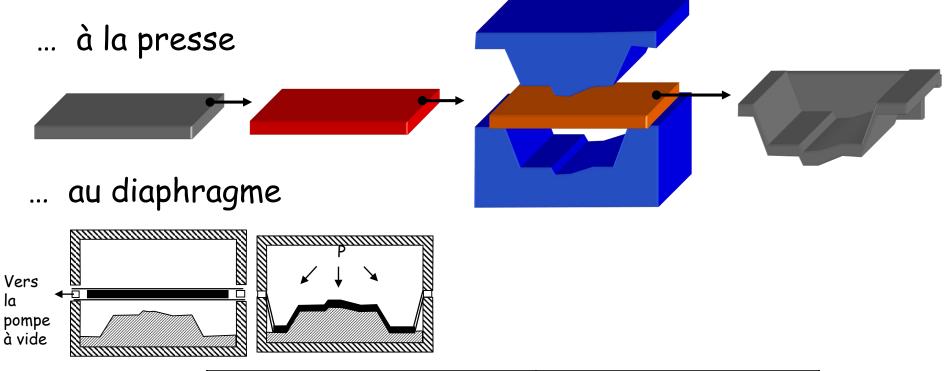

Capots, carrosserie de voiture, camion, plaques semi-finies....

Avantages :	Inconvénients :
Moulages de pièces de grandes dimensions	Coût de l'outillage
Qualité des pièces	Bavures importantes
Cadences élevées	Dosage préalable nécessaire pour chaque empreinte

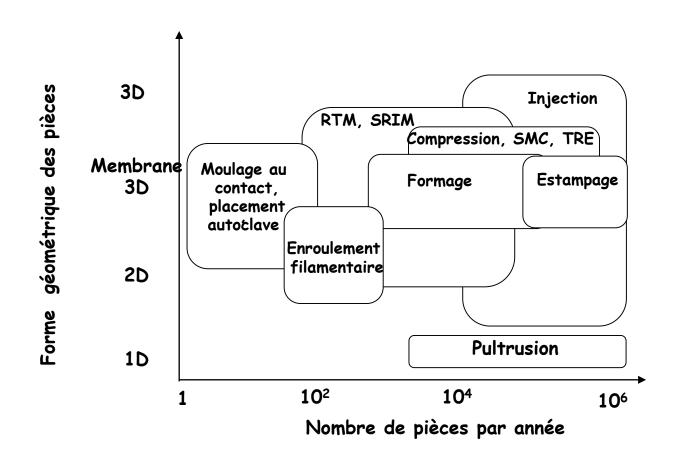


Dépose de ruban

Ruban préimprégné



Avantages :	Inconvénients :
Automatisation	Investissements importants
Placement préférentiel des renforts	Contrôle du soudage entre les
Pièces convexes et concaves	rubans


Thermoformage

Avantages :	Inconvénients :
Formes complexes	Investissements importants
Cadences élevées	Contrôle des transferts de
Bonne qualité des pièces	chaleur

Sélection

Sélection

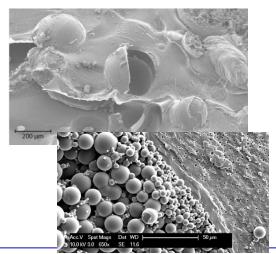
	Faibles volumes	Grands volumes
Types d'industries	Aérospatiale, militaire	Transport, ind. mécanique
Performances désirées	Rigidité et résistance spécifique élevées	Liberté de conception et de géométrie complexe
Coût	'peu' important	très important
Prix des matériaux	50 à 200 CHF/Kg	2 - 20 CHF/Kg
Matériaux dominants	Thermodurcissables et thermoplastiques avec des fibres continues	Thermoplastiques et thermodurcissables avec des fibres courtes
Techniques de fabrication	Dépose de préimprégnés, autoclave, RTM	Moulage par injection, moulage par compression, pultrusion

R&D&A

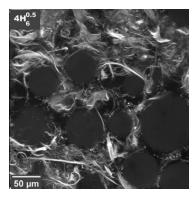
3D printing

Biocomposites

Natural fibres



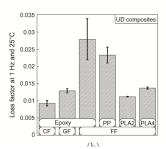
Anisoprint

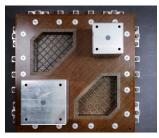

Thin films and micro devices


Nanocomposites

Self-healing composites

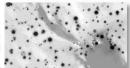
Hydrogel composites

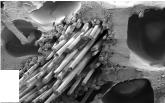


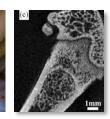


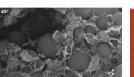
Biocomposites à fibres naturelles

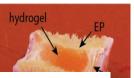
Composites biodégradables

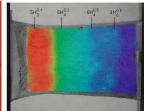


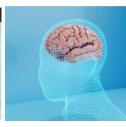


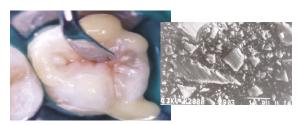

Composites polymères pour le biomédical






Implants résorbables de polymères et céramiques





Composites déformables et dissipatifs d'hydrogels et fibres

Composites for dental restoration

• **Dental filling**: Acrylate resin +33-78 wt% (quartz,baryum glass,colloidal silica)

Material	E _c (GPa)	σ _c (MPa)
Composite resin	10-16	170-260
Dentin	11.0	39.3

Challenges: wear, brittleness, shrinkage

Dental bridge, crowns, restorations: dental resins + glass fibers, Kevlar or UHMWPE

Fibers	vol%	σ _{transverse} (MPa)
UHMWPE	48	188
glass	33	265

Challenges: impregnation, interfaces, shrinkage, conversion degree...

Ortheses and prostheses

https://www.ossur.com

Ortheses

https://www.ottobock.ch

Prostheses for sports

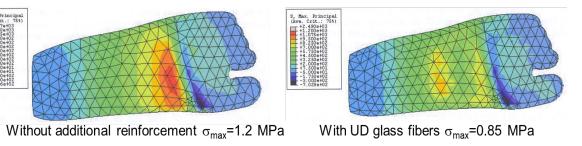
https://www.plusport.ch/fr/

https://www.sofia-g.ch/

Preimpregnated carbon-epoxy

- (+) lightness, tailored stiffnesses, minimum dimensions
 - fiber quality, quantity and orientation : prices
 - deformable parts, very elastic, strain energy
 - improved reliability and comfort
- (-) longer manufacturing, cost, testing device required

Affordable Prostheses


Minimal cost and maximal life time: feet for ICCR

Center rib (PP)

Sole (PU)

Foot core (PU foam)

Challenge: fatigue cracks at the top of the center rib

Reduction of stress concentration by adding fibres

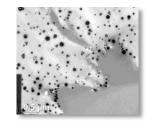
Gugolz, Rion, EPFL

Improve comfort via spring effect

https://blogs.icrc.org/inspired/2019/05/05/affordable-feet-icrc-agilis-prostheses/

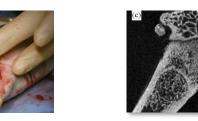
Collagen

Crystals


Composites polymères pour le biomédical

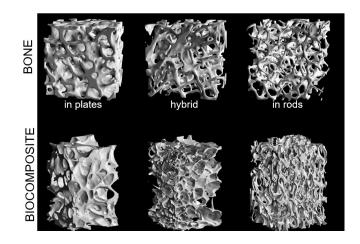
Implants résorbables de polymères et céramiques

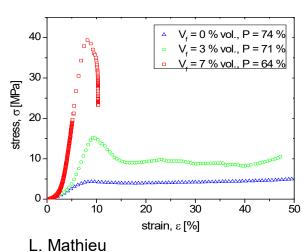
Polymère biorésorbable


Procédé de moussage physique au CO₂ supercritique

Moussage avec particules et fibres de biocéramique

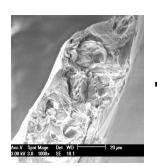
Propriétés in vitro et in vivo



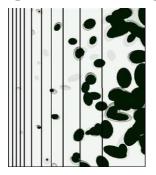

Croissance de l'os naturel

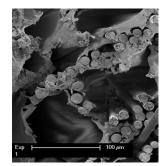
Cellular composites

CO₂ Physical foaming of thermoplastic polymers



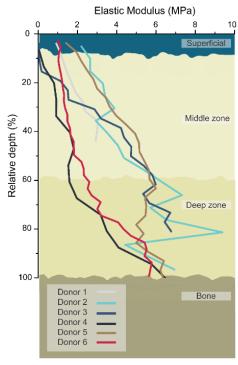
Porosity gradient

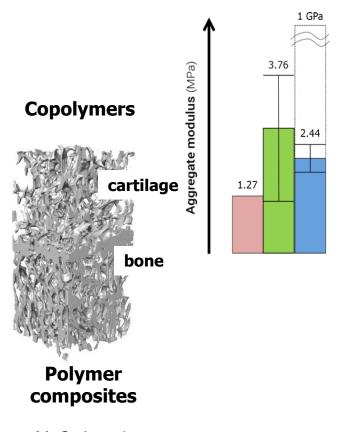

...with fillers



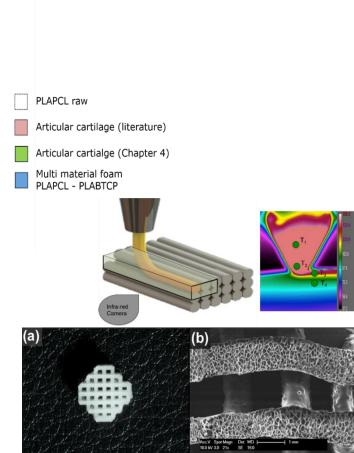
...MPa

+ gradient of long and continuous fibres

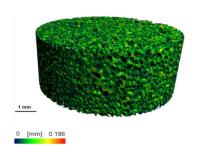

...GPa

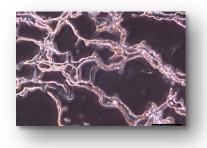


Cellular composites


Gradients of stiff and soft cellular implants

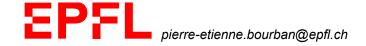
Variation of modulus in cartilages


M. Cuénoud



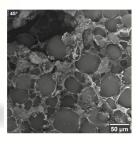
Direct 3D foam printing M. Marascio

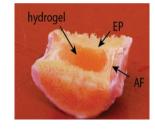
Composites biodégradables

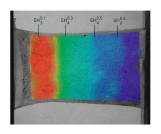


Procédé de moussage physique de biopolymères Composites cellulaires de fibres de cellulose et bois Emballages et structures temporaires

C. Boissard




Composites polymères pour le biomédical


Implants déformables et dissipatifs d'hydrogels et de fibres

Hydrogels polymères

Auto renforcés in situ par des fibres de soie

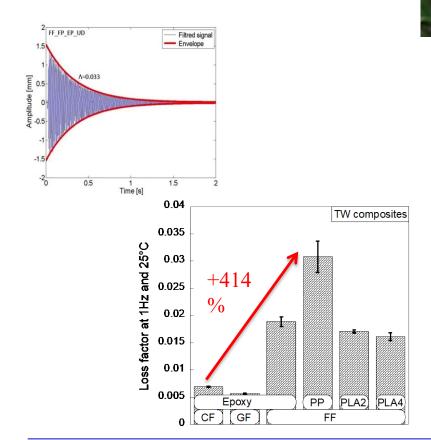
Propriétés
dissipatives et de
fatigue pour les
disques
intervertébraux

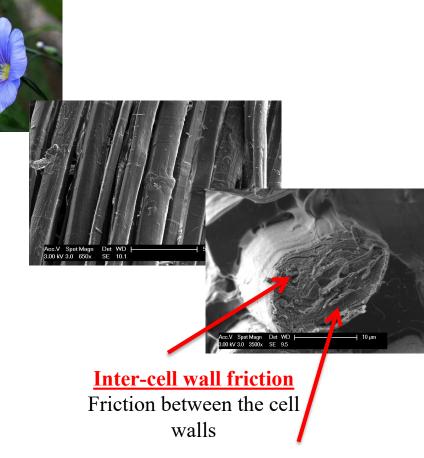
Gradients de déformation imitant ceux des tissus vivants

Iono-hydrogels pour atténuer les dommages au cerveau

C. Wyss et al, Soft Matter, 2021,17, 7038

C. Wyss et al, Extreme Mechanics Letters 24 (2018) 66-74


> P. Karami et al, Macromol. Rapid Commun. 2021, 42, 2000660


V. Varanges et al, ACS Appl. Eng. Mater. 2024, 2, 2369-2378

Biocomposites à fibres naturelles

Amortir avec des biofibres naturelles

Fabien Duc

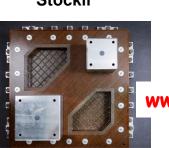
Intra-cell wall friction

Friction between cellulose and hemicellulose

Natural Fibres Composites

Thermoset NFC

- SMC, prepreg
- UP, Epoxy, VER, Phenolic
- Jute, flax, hemp...
- Modulus E ~ 10-20 GPa
- Strength ~ 200-300 MPa
- With fibre treatment: + 15-50% E



flax/carbon epoxy

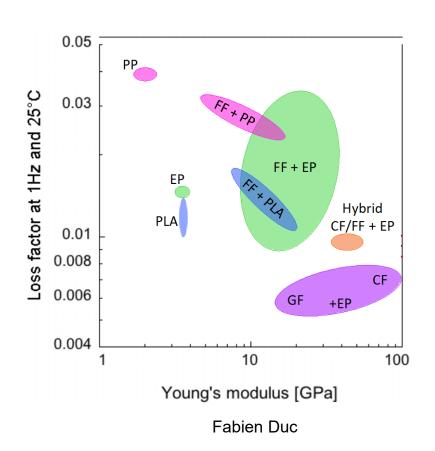
Artengo: flax(5%)/
carbon epoxy

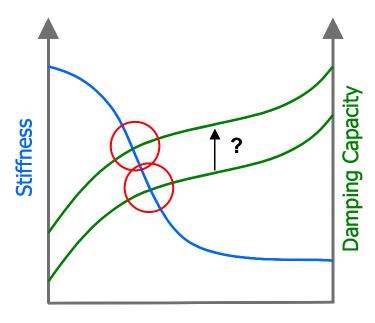
Stockli

Thermoplastic NFC

- Mainly GMT
- PP, PET, PE
- Flax, wood...
- E ~ 6 GPa (PP), 20 GPa (PET)
- Strength ~ 100 MPa
- specific properties higher than GF/PP

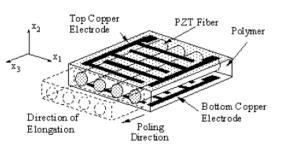
Quadrant load floor of the Porsche Cayenne: PP reinforced with 40% kenaf, flax, wood and glass

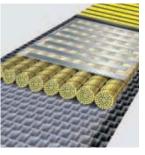

FlexForm door panel from the Mercedes M-Class and R-class: jute(50%)/glass PP


www.Bcomp.ch

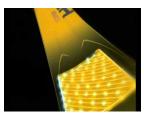
Damping and stiffness

Feel and control





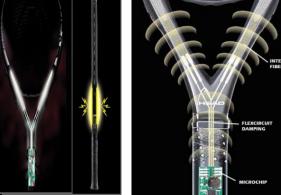
Composites actifs

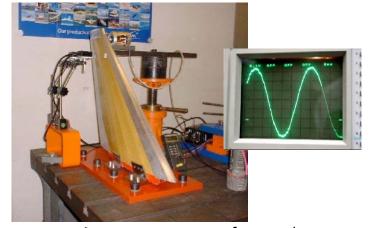


Matériaux piézoélectriques Alliages à mémoire de forme

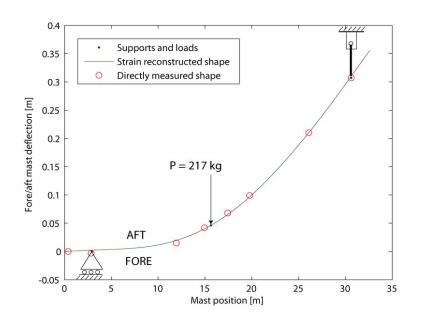
Vibrations et amortissements

Changement de formes

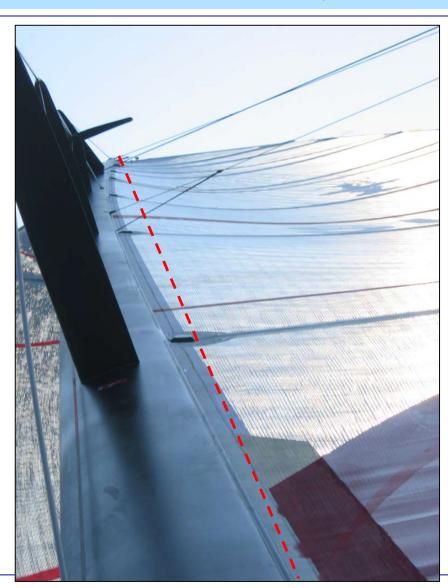




Head Intelligence Technology



Demonstrator manufactured in the ADAPT project

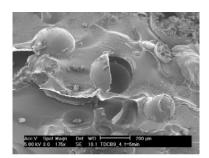


Fibres optiques pour des mesures en temps réel

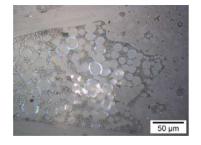
Déformations de matériaux, flexion de structures...

IOA-EPFL, D. Costantini Antoine Sigg Fiber Optic

Composites auto-réparants


Cicatrisation, réparation des dommages engendrés lors d'impacts

Réparation des griffures de surface



Kirkby, 2005

Microcapsules de monomères

Cohades, 2017

Mélange de polymères TD et TP

Why polymer nanocomposites?

Increased strength and stiffness: while maintaining the high elongation of the matrix.

Permeation Resistance: (plate-like fillers e.g. exfoliated clays) interest in nanocomposites barriers from packaging companies.

Transparency: low loadings and filler dispersion maintain inherent polymer transparency in thin sections (again interest for packaging)

Recyclability: nanofillers are not affected or degraded during processing → physical properties not seriously affected by recycling

Flame resistance: rapid char layer formation, excellent flame resistance

Transport properties: percolation at very low loadings in high aspect ratio systems,

important for thermal, electrical conductivity (e.g. carbon nanotubes)

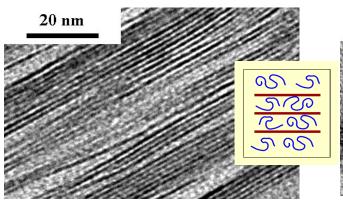
Functionality: bioactivity, hydrophilicity, magnetic and electrical properties etc. etc.

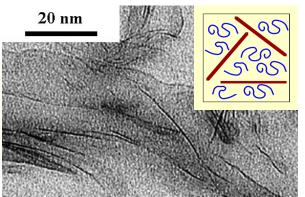
Are nanofillers worth it? Examples (2019)

- Natural clays (mined, refined, and treated)—\$3-\$15/lb.
- Synthetic clays—\$10-\$20/lb.
- Nanostructured silicas—\$5-\$200/lb.
- Nanoceramics—\$100-\$280/lb.
- Nanotubes (carbon based, MWNT)—\$100—\$200/lb.

And all at loadings of a few wt% weight saving!!

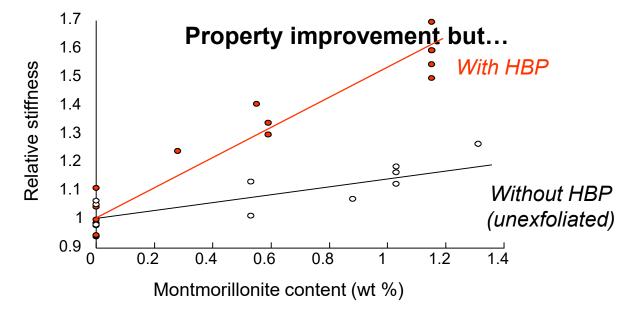
Applications now include packaging, automotive, and wire and cable industries, and huge increase in demand for these fillers is projected

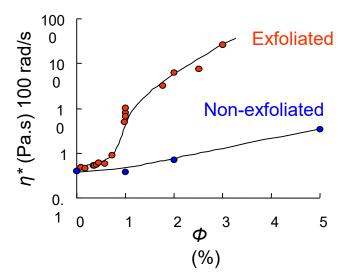

> Lower prices in the future



Nanocomposites

Clay-based thermoplastic nanocomposites

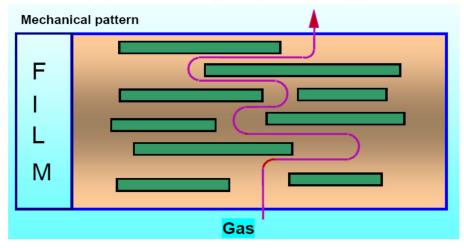

Without HBP
Non-exfoliated
Silicate layers



With Hyper Branched Polymer HBP

Exfoliated

...difficult to process!

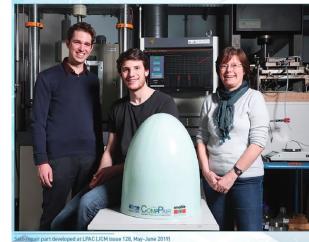


Nanocomposites

Flame retardant properties

Barrier property improvements

Improvement of barrier properties with montmorillonite layers oriented perpendicular to the diffusion path: "tortuosity effect"


Electrical conductivity with carbon nanotubes or graphene

à... de... avec... l'EPFL

https://www.startup.ch/flyability

http://www.comppair.ch

Consumer electronics

Bcomp's powerRibs™ technology is also entering consumer electronic sector. With the outstanding stiffness-toweight ratio combined to the high damage tolerance and low carbon footprint, powerRibs™ composite material is a novel solution for industrial designers and architects for reaching the best performance in a sustainable way. We are constantly working with the leading consumer electronic brands to come up with fully bio-based thermoplastic solutions in order to influence the market and make our world a better place to live.

http://www.bcomp.ch/

Latest applications JEC Composites Magazine

Observe and race

The Bolt disrupts the drone racing market with an easy-to-use and affordable carbon-fibre frame drone (US\$200 starting pack). This drone makes First Person View (FPV) piloting and racing available to everyone, as it offers three different control mods: Line of Sight, Screen on Controller, and First Person View (FPV) goggles. That means that drone racing

is not left just to the pros, but is accessible to audiences of all skill levels. The Bolt Drone is the only complete set on the market that includes the carbon-fibre drone, an HD screen, FPV goggles, controller, and more.

www.boltdrones.com

Protect your body

The C6 weighs only half as much as other current shin guards (34 g vs. 74 g). The fourth generation of these shin guards feature a 100% aerospace-grade prepreg carbon fibre/epoxy shell. The increased carbon content for Gen 4 further improves its strength and shock resistance. The shin guards come with a lifetime guarantee and have been reviewed by the specialized soccer community and sports magazines as being the best ones on the market.

www.c6agility.com

The new HD Sport Edition Camera from Xcel is a user-friendly tactical action recording device, ideal for active outdoor enthusiasts and perfect for mounting on a car, boat, ATV or a helmet. Designed by the same company as SpyPoint range cameras, the Xcel HD camera captures beautifully sharp, full high-definition 1080p videos with sound and takes stunning 5 Megapixel high-resolution im-

ages. In the air, on land, or under water, the HD Sport Edi-

tion camera from Xcel allows you to replay, enjoy and share every moment of your action-packed day in virtually all weather conditions. Thanks to its carbon-fibre camera body, the Xcel Sport Edition weighs in at only 85 grams.

www.spypoint.com

